Cluster Estimated Standard Errors (CESE)

vcovCESE(mod, cluster = NULL, type = NULL)

Arguments

mod

a model object. It can be the output of the functions lm, glm, or other regression function that returns compatible objects.

cluster

either a string vector with the name of the variables that will be used to cluster the standard errors, or a formula - e.g., ~ rhs, with a summation of the variables that will be used to cluster the standard errors replacing the rhs -, or a vector, matrix, or data.frame with the clustering data.

type

string with either HC0, HC1, HC2, HC3, or HC4. It specifies the type of heteroskedasticity correction to use (see Davidson and MacKinnon (1993) and Hayes and Cai (2007)).

Value

The function returns a variance-covariace matrix of the coefficient estimates using the Cluster Estimated Standard Error (CESE) method.

References

Jackson, John (2019) Corrected Standard Errors with Clustered Data. Political Analysis.

Hayes, A. F., & Cai, L., (2007) Using heteroskedasticity-consistent standard error estimators in ols regression: an introduction and software implementation, Behavior research methods, 39(4), 709–722.

Davidson, R., & MacKinnon, J. G., (2004) Econometric theory and methods: Oxford University Press New York.

Examples

mod = lm(enep ~ enpc + fapres + enpcfapres + proximity + eneg + logmag + logmag_eneg , data=dcese) ## -------------------------------------- ## Getting the variance covariance matrix ## -------------------------------------- ## Original variance-covariance matrix (no clustered std. errors) vcov(mod)
#> (Intercept) enpc fapres enpcfapres proximity #> (Intercept) 0.34193367 -0.080109404 -6.498717e-02 0.0227605333 -0.0416369373 #> enpc -0.08010940 0.035696550 2.401318e-02 -0.0102825206 0.0059204296 #> fapres -0.06498717 0.024013177 2.734250e-02 -0.0090017922 -0.0004345205 #> enpcfapres 0.02276053 -0.010282521 -9.001792e-03 0.0036429747 -0.0014388263 #> proximity -0.04163694 0.005920430 -4.345205e-04 -0.0014388263 0.0776196264 #> eneg -0.03580496 -0.001476759 -2.517854e-03 0.0007025382 -0.0039084482 #> logmag -0.05448255 -0.006980873 1.742043e-04 0.0021399533 -0.0023836036 #> logmag_eneg 0.02532042 0.001832590 -7.512686e-05 -0.0007721436 -0.0009085951 #> eneg logmag logmag_eneg #> (Intercept) -0.0358049582 -0.0544825503 2.532042e-02 #> enpc -0.0014767587 -0.0069808731 1.832590e-03 #> fapres -0.0025178544 0.0001742043 -7.512686e-05 #> enpcfapres 0.0007025382 0.0021399533 -7.721436e-04 #> proximity -0.0039084482 -0.0023836036 -9.085951e-04 #> eneg 0.0218856408 0.0222887158 -1.190289e-02 #> logmag 0.0222887158 0.0606796325 -2.995518e-02 #> logmag_eneg -0.0119028856 -0.0299551838 1.778317e-02
## Variance-covariance matrix using CRSE (sandwish package) ## sandwich::vcovCL(mod, cluster = ~ country) ## sandwich::vcovCL(mod, cluster = ~ country, type="HC3") ## Variance-covariance matrix using CESE ceser::vcovCESE(mod, cluster = ~ country)
#> (Intercept) enpc fapres enpcfapres proximity #> (Intercept) 1.51221650 -0.3374255708 -0.308548972 0.087864892 -0.082214926 #> enpc -0.33742557 0.1187065304 0.099198869 -0.033556819 -0.003174936 #> fapres -0.30854897 0.0991988687 0.135525330 -0.036883799 -0.016929595 #> enpcfapres 0.08786489 -0.0335568193 -0.036883799 0.012012890 0.003051838 #> proximity -0.08221493 -0.0031749364 -0.016929595 0.003051838 0.132039888 #> eneg -0.08262488 0.0026806954 -0.006697128 0.001033777 -0.005366609 #> logmag -0.21216040 0.0009545731 0.006332777 0.003599288 0.009265360 #> logmag_eneg 0.07928461 -0.0055220287 -0.010890411 0.000813923 0.004237610 #> eneg logmag logmag_eneg #> (Intercept) -0.082624881 -0.2121603981 0.079284613 #> enpc 0.002680695 0.0009545731 -0.005522029 #> fapres -0.006697128 0.0063327767 -0.010890411 #> enpcfapres 0.001033777 0.0035992881 0.000813923 #> proximity -0.005366609 0.0092653603 0.004237610 #> eneg 0.037272375 0.0455315878 -0.021837494 #> logmag 0.045531588 0.2123302156 -0.099187086 #> logmag_eneg -0.021837494 -0.0991870859 0.057389251
ceser::vcovCESE(mod, cluster = ~ country, type="HC3") # HC3 correction
#> (Intercept) enpc fapres enpcfapres proximity #> (Intercept) 1.59804215 -0.3565889644 -0.326044522 0.0928614018 -0.086958688 #> enpc -0.35658896 0.1254735451 0.104834222 -0.0354704134 -0.003332760 #> fapres -0.32604452 0.1048342220 0.143205927 -0.0389793642 -0.017878997 #> enpcfapres 0.09286140 -0.0354704134 -0.038979364 0.0126978025 0.003217871 #> proximity -0.08695869 -0.0033327597 -0.017878997 0.0032178709 0.139694748 #> eneg -0.08737194 0.0028258190 -0.007080605 0.0010940285 -0.005680272 #> logmag -0.22422347 0.0009844983 0.006687954 0.0038080340 0.009776123 #> logmag_eneg 0.08380931 -0.0058250477 -0.011500450 0.0008568949 0.004471824 #> eneg logmag logmag_eneg #> (Intercept) -0.087371945 -0.2242234723 0.0838093142 #> enpc 0.002825819 0.0009844983 -0.0058250477 #> fapres -0.007080605 0.0066879544 -0.0115004496 #> enpcfapres 0.001094029 0.0038080340 0.0008568949 #> proximity -0.005680272 0.0097761226 0.0044718243 #> eneg 0.039433115 0.0481561426 -0.0231003489 #> logmag 0.048156143 0.2244236813 -0.1048418029 #> logmag_eneg -0.023100349 -0.1048418029 0.0606625677
## --------- ## Summaries ## --------- ## no robust SE summary(mod)
#> #> Call: #> lm(formula = enep ~ enpc + fapres + enpcfapres + proximity + #> eneg + logmag + logmag_eneg, data = dcese) #> #> Residuals: #> Min 1Q Median 3Q Max #> -3.5592 -0.8192 -0.3615 0.3769 9.0393 #> #> Coefficients: #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) 2.70431 0.58475 4.625 5.65e-06 *** #> enpc 0.30399 0.18894 1.609 0.108711 #> fapres -0.61179 0.16536 -3.700 0.000258 *** #> enpcfapres 0.20779 0.06036 3.443 0.000660 *** #> proximity -0.02243 0.27860 -0.081 0.935890 #> eneg -0.06566 0.14794 -0.444 0.657483 #> logmag -0.18146 0.24633 -0.737 0.461926 #> logmag_eneg 0.36051 0.13335 2.703 0.007266 ** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> Residual standard error: 1.653 on 291 degrees of freedom #> Multiple R-squared: 0.3784, Adjusted R-squared: 0.3634 #> F-statistic: 25.31 on 7 and 291 DF, p-value: < 2.2e-16 #>
## summary table using CRSE (sandwich package) ## lmtest::coeftest(mod, vcov = sandwich::vcovCL, cluster = ~ country) ## summary using CESE lmtest::coeftest(mod, vcov = ceser::vcovCESE, cluster = ~ country, type='HC3')
#> #> t test of coefficients: #> #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) 2.704309 1.264137 2.1393 0.03325 * #> enpc 0.303988 0.354222 0.8582 0.39150 #> fapres -0.611787 0.378426 -1.6167 0.10703 #> enpcfapres 0.207791 0.112685 1.8440 0.06620 . #> proximity -0.022429 0.373758 -0.0600 0.95219 #> eneg -0.065662 0.198578 -0.3307 0.74114 #> logmag -0.181462 0.473734 -0.3830 0.70197 #> logmag_eneg 0.360513 0.246298 1.4637 0.14435 #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #>