All functions

classify()

Classify data points

coef(<dpGLM>)

Extract dpGLM fitted coefficients

coef(<hdpGLM>)

Extract hdpGLM fitted coefficients

hdpGLM()

Fit Hierarchical Dirichlet Process GLM

hdpGLM_classify()

Deprecated

hdpGLM_package

hdpGLM: A package for computating Hierarchical Dirichlet Process Generalized Linear Models

hdpGLM_simParameters()

Simulate the parameters of the model

hdpGLM_simulateData()

Simulate a Data Set from hdpGLM

mcmc_info.dpGLM()

mcmc

mcmc_info.hdpGLM()

mcmc

nclusters()

nclusters

plot(<dpGLM>)

Default plot for class dpGLM

plot(<hdpGLM>)

Plot

plot_beta()

Plot beta posterior distribution

plot_beta_sim()

Plot simulated data

plot_hdpglm()

Plot posterior distributions

plot_pexp_beta()

Plot beta posterior expectation

plot_tau()

Plot tau

predict(<dpGLM>)

dpGLM Predicted values

predict(<hdpGLM>)

hdpGLM Predicted values

print(<dpGLM>)

Print

print(<dpGLM_data>)

Print

print(<hdpGLM>)

Print

print(<hdpGLM_data>)

Print

summary(<dpGLM>)

Summary for dpGLM class

summary(<dpGLM_data>)

Summary dpGLM data

summary(<hdpGLM>)

Summary for hdpGLM class

summary(<hdpGLM_data>)

Summary

summary_tidy()

Tidy summary

welfare

Fake data set with 2000 observations

welfare2

Fake data set with 2000 observations